Completing a Metric Space

نویسندگان

  • MA
  • Kurt Bryan
چکیده

Recall that a metric space M is said to be complete if every Cauchy sequence in M converges to a limit in M . Not all metric spaces are complete, but it is a fact that all metric spaces can be “completed”, in a way that preserves the essential structure of the metric space. If the space in question is a normed linear space this process completes the space to a Banach space, and an inner product space is completed to a Hilbert space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Structure of Metric-like Spaces

The main purpose of this paper is to introduce several concepts of the metric-like spaces. For instance, we define concepts such as equal-like points, cluster points and completely separate points. Furthermore, this paper is an attempt to present compatibility definitions for the distance between a point and a subset of a metric-like space and also for the distance between two subsets of a metr...

متن کامل

The Wijsman structure of a quantale-valued metric space

We define and study a quantale-valued Wijsman structure on the hyperspace of all non-empty closed sets of a quantale-valued metric space. We show its admissibility and that the metrical coreflection coincides with the quantale-valued Hausdorff metric and that, for a metric space, the topological coreflection coincides with the classical Wijsman topology. We further define an index of compactnes...

متن کامل

On the topological equivalence of some generalized metric spaces

‎The aim of this paper is to establish the equivalence between the concepts‎ ‎of an $S$-metric space and a cone $S$-metric space using some topological‎ ‎approaches‎. ‎We introduce a new notion of a $TVS$-cone $S$-metric space using‎ ‎some facts about topological vector spaces‎. ‎We see that the known results on‎ ‎cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained‎ from...

متن کامل

Common fixed point results on vector metric spaces

In this paper we consider the so called a vector metric space, which is a generalization of metric space, where the metric is Riesz space valued. We prove some common fixed point theorems for three mappings in this space. Obtained results extend and generalize well-known comparable results in the literature.

متن کامل

Fixed Point Theorems for kg- Contractive Mappings in a Complete Strong Fuzzy Metric Space

In this paper, we introduce a new class of contractive mappings in a fuzzy metric space and we present fixed point results for this class of maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011